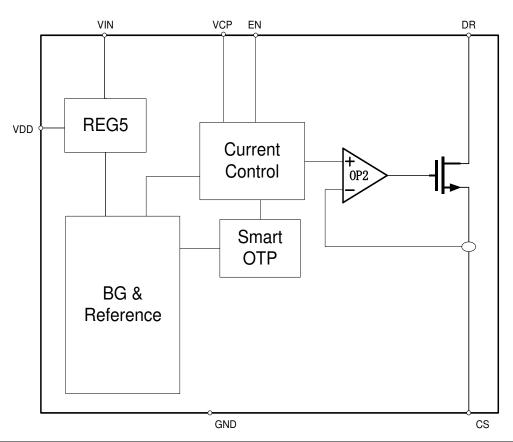
简介

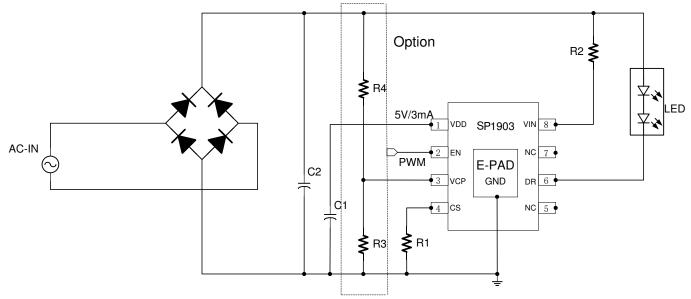
SP1903 是一款 PWM 调光超高压线性 LED 驱动 IC,最高输入电压可达 400V,适用于驱动高电压小电流 LED 负载。应用方案外部元件极少,布局紧凑,能简单 灵活地应用于各种小体积或者平面型 LED 产品。同时,简单的线性驱动方式不需磁性元件,很好地避免 EMI 干扰问题。

SP1903 集成 PWM 调光功能,调光深度最低可以达到 1%;集成恒功率调节功能;为了节省客户整体 BOM 成本,SP1903 开创性的集成了高压 Regulator,可以直接用来为 MCU 等提供 PWM 信号模块供电。

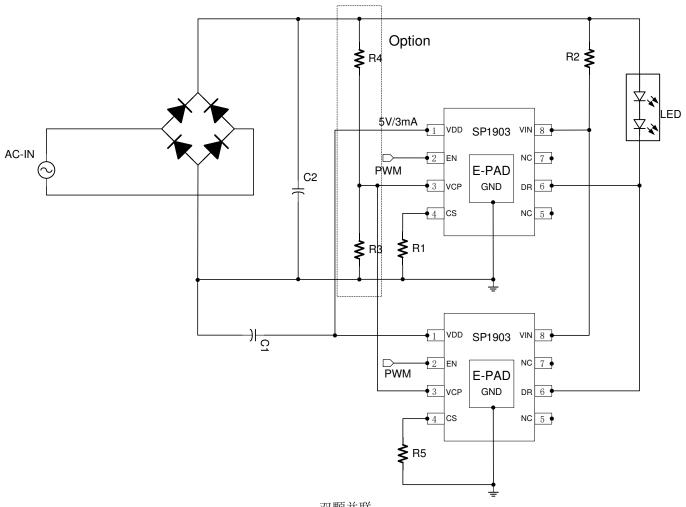
为了防止 IC 过热损坏, 1903 集成智能温控功能, 当 IC 内部结温上升到 132℃时, SP1903 开始减小输 出电流,当结温达到 162℃时,输出电流将会减小至 0。 这可避免传统过温保护方式的灯闪烁问题。


应用范围

- LED 球泡灯
- LED 灯管
- 其他 LED 灯

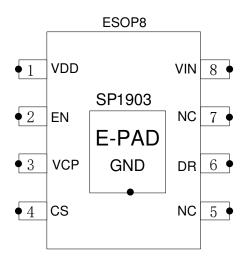

特色

- 20V~400V工作电压
- 最低 1%的 PWM 调光深度
- 最大 140mA 峰值输出电流
- ±5%输出电流精度
- 可多个 IC 并联使用,以满足较大电流输出
- 集成高压 Regulator 给小电流智能元件供电
- 集成恒功率调节功能
- 高功率因数
- 高效率
- 极少的外围元件
- LED 开路、短路保护
- 智能过温保护功能
 - T_J>132℃,输出电流开始减小;
 - T」>162℃,输出电流减小至0
- ESOP-8 封装


功能框图

典型应用电路

带 5V 电源(为 MCU 等元件供电)的 PWM 调光 IC



双颗并联

订购信息

订购编号	调光	封装类型	正印
SP1903-HS	PWM 调光	ESOP-8	SP1903-HS

引脚架构

引脚说明

己阳夕粉	说明	
引脚名称 		
VDD	5.1V 电源输出	1
EN	PWM 调光信号输入脚	2
VCP	恒功率控制输入脚	3
CS	输出电流设定引脚,可接电阻至 IC 地。	4
DR	POWER MOS 漏极接 LED 负端	6
VIN	输入电源引脚,可直接连接至高压直流输入电源。	8
NC	无连接	5,7
GND	IC地。	EPAD

功能描述

工作原理

SP1903 采用单段线性恒流驱动技术的 PWM 调光 IC,电路拓扑简单实用,集成恒功率调节功能,并且创造性的加入高压稳压源,为提供 PWM 信号的 MCU, PIR 等小电流调光外围元件提供电源,使整个调光系统省掉了一个供电模块,大大的节省了系统成本。

输出电流

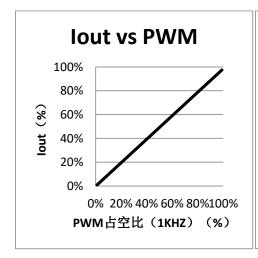
输出电流可通过设置 CS 端外接到 GND 的电阻来实现(典型图中 R1)。SP1903 内部设计了 600mV 基准电压,作为 LED 导通时的 CS 电压阈值。LED 电流由下式计算:

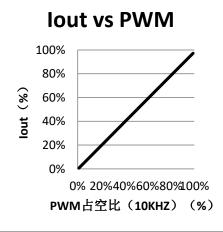
$$I_{DR} = \frac{600 \text{mV}}{R_{CS}}$$

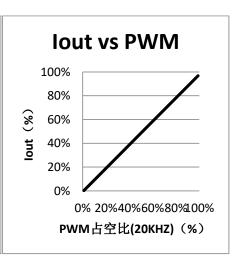
输入恒功率

芯片内部设置输入恒功率起作用的阈值为 1.2V,可通过采样电阻 R_3 和 R_4 的比例来设置输入恒功率的起调 AC 电压。若无电解电容应用时,可以通过下式计算

$$\frac{R_3}{R_3 + R_4} \times V_{AC} \times 1.414 = 1.2V$$


若有电解电容应用时,可以根据 VCP 引脚电压来设定相应的起调 AC 电压,如不需要输入恒功率功能,VCP 接地或悬空处理。


VDD 输出电压


SP1903 集成了高压 regulator, 在 VDD 管脚外接一电容(典型值 2.2uF)可提供 5.1V 输出电压, 典型 3mA 输出电流。同时, 芯片内部集成 VDD 嵌位电路, 嵌位电压设置为 5.45V, 减小了 VDD 电压受外部干扰时引起的过冲。

PWM 调光

可对 EN 脚输入 PWM 信号,从而实现 PWM 调光功能,PWM 低电平关断,PWM 高电平开启,如不需要 PWM 调光功能,EN 脚接高或悬空处理。下图是 PWM 调光趋势图。

智能温控

SP1903 集成智能过温保护功能。当 IC 内部结温高于 132℃ (典型值)时,内部参考电压以 20mV/℃的系数减小,输出电流也因此跟着减小。当 IC 内部结温达到 162℃时,输出电流将会减小至 0,IC 结温回降,IC 重新工作。

智能温控功能可有效地避免传统过热保护功能导致的闪烁现象。当环境温度异常导致 IC 结温升高并达到 132℃, SP1903 将试图通过减小输出电流来减少 LED 发热量,从而降低环境温度。输出电流与环境温度将可能达到平衡,从而避免了 LED 闪烁。

LED 短路保护

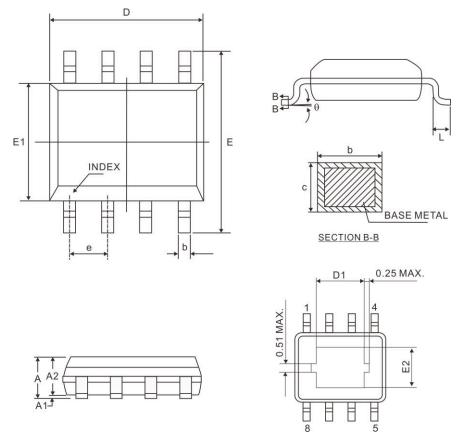
SP1903 采用线性恒流控制方式,输入电压高于输出电压的多余电压由 IC 承受,IC 输入电压可达 400V。当部分 LED 发生短路,IC 所承受的电压将会升高导致 IC 功耗增加,IC 温度上升,如果 IC 内部结温仍小于 132° C,输出电流将保持恒定。最坏情况是 LED 负载正端与负端短路,全部输入电压均由 IC 承受,IC 内部结温将会急剧上升至 162° C,IC 关闭输出。明显地,LED 短路保护是通过温度衰减实现的。

CS 电阻开路,短路保护

CS 电阻短路触发 OTP 保护, 功率管关断; CS 电阻开路 CS 脚加入 2uA 上拉电流,把 CS 电位上拉至 VDD,功率管关断。

最大额定值

参数		符号	额定值	单位
VIN to GND		-	-0.3~+700	V
DR to GND		-	-0.3~+500	V
CS to GND		-	-0.3~+6	V
VCP to GND		-	-0.3~+6	V
EN to GND		-	-0.3~+6	V
VDD to GND		-	-0.3~+6	V
DR 最大输出峰值电流		Іоит	140	mA
工作温度范围		T _{OPR}	-40~+125	$^{\circ}\mathbb{C}$
储存温度范围		T _{STG}	-40~+150	$^{\circ}\mathbb{C}$
最大工作结温		TJ	150	$^{\circ}\mathbb{C}$
热阻	ESOP-8	R_{JA}	41.03	°C/ W


电气特性参数

(如无特殊说明, TA=25℃)

参数	符号	测试条件	最小值	典型值	最大值	单位
输入电压	V_{IN}		20		600	V
工作电流	I _{AC}	V _{IN} =30V,DR Floating,CS Floating		125		uA
VDD 输出电压	V_{DD}	$V_{IN} = DR = 30V$	5.0	5.1	5.2	V
VDD 嵌位电压	V_{CLAMP}		5.35	5.45	5.55	V
VDD 输出电流	I _{VDD}			3	6	mA
EN开启电压	V_{EN_H}			2.0		V
EN 关断电压	V_{EN_L}			0.8		V
恒功率补偿电压	V _{CP}			1.2		V
CS 电压阈值	Vcs	$V_{IN} = DR = 30V, R_{CS} = 1K\Omega$	576	600	624	mV
温度保护阈值	T _{TRIG}			132		$^{\circ}\mathbb{C}$
温度保护衰减系数	Κ _T			-20		mV/℃

封装信息

8 PINS, ESOP

Symbol	Dimensions(mm)			
	Min.	Nom.	Max.	
Α	-	-	1.70	
A1	0.00	-	0.15	
A2	1.25	-	-	
b	0.31	-	0.51	
С	0.10	-	0.25	
е	1.27 BSC			
D	4.90 BSC			
D1	2.81 - 3.30			
E	6.00 BSC			
E1	3.90 BSC			
E2	2.05	-	2.41	
L	0.40	0.60	1.27	
θ	0°	-	8°	

Notes:

- 1. Refer to JEDEC MS-012 BA
- 2. All dimensions are in millimeter